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Notations

• sets of numbers

– N - set of natural numbers

– Z - set of integers

– Z+ - set of nonnegative integers

– Q - set of rational numbers

– R - set of real numbers

– R+ - set of nonnegative real numbers

– R++ - set of positive real numbers

– C - set of complex numbers

• sequences ⟨xi⟩ and the like

– finite ⟨xi⟩ni=1, infinite ⟨xi⟩∞i=1 - use ⟨xi⟩ whenever unambiguously understood

– similarly for other operations, e.g.,
∑
xi,
∏
xi, ∪Ai, ∩Ai,×Ai

– similarly for integrals, e.g.,
∫
f for

∫∞
−∞ f

• sets

– Ã - complement of A
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– A ∼ B - A ∩ B̃
– A∆B - (A ∩ B̃) ∪ (Ã ∩ B)

– P(A) - set of all subsets of A

• sets in metric vector spaces

– A - closure of set A

– A◦ - interior of set A

– relintA - relative interior of set A

– bdA - boundary of set A

• set algebra

– σ(A) - σ-algebra generated by A, i.e., smallest σ-algebra containing A
• norms in Rn

– ∥x∥p (p ≥ 1) - p-norm of x ∈ Rn, i.e., (|x1|p + · · · + |xn|p)1/p
– e.g., ∥x∥2 - Euclidean norm

• matrices and vectors

– ai - i-th entry of vector a

– Aij - entry of matrix A at position (i, j), i.e., entry in i-th row and j-th column

– Tr(A) - trace of A ∈ Rn×n, i.e., A1,1 + · · · + An,n
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• symmetric, positive definite, and positive semi-definite matrices

– Sn ⊂ Rn×n - set of symmetric matrices

– Sn+ ⊂ Sn - set of positive semi-definite matrices; A ⪰ 0 ⇔ A ∈ Sn+
– Sn++ ⊂ Sn - set of positive definite matrices; A ≻ 0 ⇔ A ∈ Sn++

• sometimes, use Python script-like notations (with serious abuse of mathematical

notations)

– use f : R → R as if it were f : Rn → Rn, e.g.,

exp(x) = (exp(x1), . . . , exp(xn)) for x ∈ Rn

and

log(x) = (log(x1), . . . , log(xn)) for x ∈ Rn++

which corresponds to Python code numpy.exp(x) or numpy.log(x) where x is

instance of numpy.ndarray, i.e., numpy array

– use
∑
x to mean 1Tx for x ∈ Rn, i.e.∑

x = x1 + · · · + xn

which corresponds to Python code x.sum() where x is numpy array
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– use x/y for x, y ∈ Rn to mean[
x1/y1 · · · xn/yn

]T
which corresponds to Python code x / y where x and y are 1-d numpy arrays

– use X/Y for X,Y ∈ Rm×n to mean
X1,1/Y1,1 X1,2/Y1,2 · · · X1,n/Y1,n

X2,1/Y2,1 X2,2/Y2,2 · · · X2,n/Y2,n
... ... . . . ...

Xm,1/Ym,1 Xm,2/Ym,2 · · · Xm,n/Ym,n


which corresponds to Python code X / Y where X and Y are 2-d numpy arrays
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Some definitions

Definition 1. [infinitely often - i.o.] statement Pn, said to happen infinitely often or

i.o. if

(∀N ∈ N) (∃n > N) (Pn)

Definition 2. [almost everywhere - a.e.] statement P (x), said to happen almost

everywhere or a.e. or almost surely or a.s. (depending on context) associated with

measure space (X,B, µ) if

µ{x|P (x)} = 1

or equivalently

µ{x| ∼ P (x)} = 0
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Some conventions

• (for some subjects) use following conventions

– 0 · ∞ = ∞ · 0 = 0

– (∀x ∈ R++)(x · ∞ = ∞ · x = ∞)

– ∞ · ∞ = ∞

Searching for Universal Truths 8
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Some principles

Principle 1. [principle of mathematical induction]

P (1)&[P (n ⇒ P (n+ 1)] ⇒ (∀n ∈ N)P (n)

Principle 2. [well ordering principle] each nonempty subset ofN has a smallest element

Principle 3. [principle of recursive definition] for f : X → X and a ∈ X, exists

unique infinite sequence ⟨xn⟩∞n=1 ⊂ X such that

x1 = a

and

(∀n ∈ N) (xn+1 = f(xn))

• note that Principle 1 ⇔ Principle 2 ⇒ Principle 3
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Some definitions for functions

Definition 3. [functions] for f : X → Y

• terms, map and function, exterchangeably used

• X and Y , called domain of f and codomain of f respectively

• {f(x)|x ∈ X}, called range of f

• for Z ⊂ Y , f−1(Z) = {x ∈ X|f(x) ∈ Z} ⊂ X, called preimage or inverse image

of Z under f

• for y ∈ Y , f−1({y}), called fiber of f over y

• f , called injective or injection or one-to-one if (∀x ̸= v ∈ X) (f(x) ̸= f(v))

• f , called surjective or surjection or onto if (∀x ∈ X) (∃yinY ) (y = f(x))

• f , called bijective or bijection if f is both injective and surjective, in which case, X

and Y , said to be one-to-one correspondece or bijective correspondece

• g : Y → X, called left inverse if g ◦ f is identity function

• h : Y → X, called right inverse if f ◦ h is identity function
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Some properties of functions

Lemma 1. [functions] for f : X → Y

• f is injective if and only if f has left inverse

• f is surjective if and only if f has right inverse

• hence, f is bijective if and only if f has both left and right inverse because if g and h

are left and right inverses respectively, g = g ◦ (f ◦ h) = (g ◦ f) ◦ h = h

• if |X| = |Y | < ∞, f is injective if and only if f is surjective if and only if f is

bijective
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Countability of sets

• set A is countable if range of some function whose domain is N

• N, Z, Q: countable

• R: not countable
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Limit sets

• for sequence, ⟨An⟩, of subsets of X
– limit superior or limsup of ⟨An⟩, defined by

lim sup ⟨An⟩ =

∞⋂
n=1

∞⋃
m=n

Am

– limit inferior or liminf of ⟨An⟩, defined by

lim inf ⟨An⟩ =

∞⋃
n=1

∞⋂
m=n

Am

• always

lim inf ⟨An⟩ ⊂ lim sup ⟨An⟩
• when lim inf ⟨An⟩ = lim sup ⟨An⟩, sequence, ⟨An⟩, said to converge to it, denote

lim ⟨An⟩ = lim inf ⟨An⟩ = lim sup ⟨An⟩ = A
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Algebras of sets

• collection A of subsets of X called algebra or Boolean algebra if

(∀A,B ∈ A )(A ∪ B ∈ A ) and (∀A ∈ A )(Ã ∈ A )

– (∀A1, . . . , An ∈ A )(∪ni=1Ai ∈ A )

– (∀A1, . . . , An ∈ A )(∩ni=1Ai ∈ A )

• algebra A called σ-algebra or Borel field if

– every union of a countable collection of sets in A is in A , i.e.,

(∀⟨Ai⟩)(∪∞
i=1Ai ∈ A )

• given sequence of sets in algebra A , ⟨Ai⟩, exists disjoint sequence, ⟨Bi⟩ such that

Bi ⊂ Ai and
∞⋃
i=1

Bi =

∞⋃
i=1

Ai
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Algebras generated by subsets

• algebra generated by collection of subsets of X, C, can be found by

A =
⋂

{B|B ∈ F}

where F is family of all algebras containing C
– smallest algebra A containing C, i.e.,

(∀B ∈ F)(A ⊂ B)

• σ-algebra generated by collection of subsets of X, C, can be found by

A =
⋂

{B|B ∈ G}

where G is family of all σ-algebras containing C
– smallest σ-algebra A containing C, i.e.,

(∀B ∈ G)(A ⊂ B)
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Relation

• x said to stand in relation R to y, denoted by x R y

• R said to be relation on X if x R y ⇒ x ∈ X and y ∈ X

• R is

– transitive if x R y and y R z ⇒ x R z

– symmetric if x R y = y R x

– reflexive if x R x

– antisymmetric if x R y and y R x ⇒ x = y

• R is

– equivalence relation if transitive, symmetric, and reflexive, e.g., modulo

– partial ordering if transitive and antisymmetric, e.g., “⊂”

– linear (or simple) ordering if transitive, antisymmetric, and x R y or y R x for all

x, y ∈ X

- e.g., “≥” linearly orders R while “⊂” does not P(X)

Searching for Universal Truths - Real Analysis - Set Theory 18
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Ordering

• given partial order, ≺, a is

– a first/smallest/least element if x ̸= a ⇒ a ≺ x

– a last/largest/greatest element if x ̸= a ⇒ x ≺ a

– a minimal element if x ̸= a ⇒ x ̸≺ a

– a maximal element if x ̸= a ⇒ a ̸≺ x

• partial ordering ≺ is

– strict partial ordering if x ̸≺ x

– reflexive partial ordering if x ≺ x

• strict linear ordering < is

– well ordering for X if every nonempty set contains a first element

Searching for Universal Truths - Real Analysis - Set Theory 19
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Axiom of choice and equivalent principles

Axiom 1. [axiom of choice] given a collection of nonempty sets, C, there exists f :

C → ∪A∈CA such that

(∀A ∈ C ) (f(A) ∈ A)

- also called multiplicative axiom - preferred to be called to axiom of choice by Bertrand

Russell for reason writte on page 21

- no problem when C is finite

- need axiom of choice when C is not finite

Principle 4. [Hausdorff maximal principle] for particial ordering ≺ on X, exists a

maximal linearly ordered subset S ⊂ X, i.e., S is linearity ordered by ≺ and if

S ⊂ T ⊂ X and T is linearly ordered by ≺, S = T

Principle 5. [well-ordering principle] every set X can be well ordered, i.e., there is a

relation < that well orders X

• note that Axiom 1 ⇔ Principle 4 ⇔ Principle 5
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Infinite direct product

Definition 4. [direct product] for collection of sets, ⟨Xλ⟩, with index set, Λ,

×
λ∈Λ

Xλ

called direct product

- for z = ⟨xλ⟩ ∈×Xλ, xλ called λ-th coordinate of z

• if one of Xλ is empty,×Xλ is empty

• axiom of choice is equivalent to converse, i.e., if none of Xλ is empty,×Xλ is not

empty

if one of Xλ is empty,×Xλ is empty

• this is why Bertrand Russell prefers multiplicative axiom to axiom of choice for name of

axiom (Axiom 1)

Searching for Universal Truths - Real Analysis - Set Theory 21
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Field axioms

• field axioms - for every x, y, z ∈ F

– (x+ y) + z = x+ (y + z) - additive associativity

– (∃0 ∈ F)(∀x ∈ F)(x+ 0 = x) - additive identity

– (∀x ∈ F)(∃w ∈ F)(x+ w = 0) - additive inverse

– x+ y = y + x - additive commutativity

– (xy)z = x(yz) - multiplicative associativity

– (∃1 ̸= 0 ∈ F)(∀x ∈ F)(x · 1 = x) - multiplicative identity

– (∀x ̸= 0 ∈ F)(∃w ∈ F)(xw = 1) - multiplicative inverse

– x(y + z) = xy + xz - distributivity

– xy = yx - multiplicative commutativity

• system (set with + and ·) satisfying axiom of field called field

– e.g., field of module p where p is prime, Fp
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Axioms of order

• axioms of order - subset, F++ ⊂ F, of positive (real) numbers satisfies

– x, y ∈ F++ ⇒ x+ y ∈ F++

– x, y ∈ F++ ⇒ xy ∈ F++

– x ∈ F++ ⇒ −x ̸∈ F++

– x ∈ F ⇒ x = 0 ∨ x ∈ F++ ∨ −x ∈ F++

• system satisfying field axioms & axioms of order called ordered field

– e.g., set of real numbers (R), set of rational numbers (Q)
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Axiom of completeness

• completeness axiom

– every nonempty set S of real numbers which has an upper bound has a least upper

bound, i.e.,

{l|(∀x ∈ S)(l ≤ x)}
has least element.

– use inf S and supS for least and greatest element (when exist)

• ordered field that is complete is complete ordered field

– e.g., R (with + and ·)

⇒ axiom of Archimedes

– given any x ∈ R, there is an integer n such that x < n

⇒ corollary

– given any x < y ∈ R, exists r ∈ Q such tat x < r < y

Searching for Universal Truths - Real Analysis - Real Number System 25
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Sequences of R

• sequence of R denoted by ⟨xi⟩∞i=1 or ⟨xi⟩
– mapping from N to R

• limit of ⟨xn⟩ denoted by limn→∞ xn or lim xn - defined by a ∈ R

(∀ϵ > 0)(∃N ∈ N)(n ≥ N ⇒ |xn − a| < ϵ)

– lim xn unique if exists

• ⟨xn⟩ called Cauchy sequence if

(∀ϵ > 0)(∃N ∈ N)(n,m ≥ N ⇒ |xn − xm| < ϵ)

• Cauchy criterion - characterizing complete metric space (including R)

– sequence converges if and only if Cauchy sequence
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Other limits

• cluster point of ⟨xn⟩ - defined by c ∈ R

(∀ϵ > 0, N ∈ N)(∃n > N)(|xn − c| < ϵ)

• limit superior or limsup of ⟨xn⟩

lim sup xn = inf
n

sup
k>n

xk

• limit inferior or liminf of ⟨xn⟩

lim inf xn = sup
n

inf
k>n

xk

• lim inf xn ≤ lim sup xn

• ⟨xn⟩ converges if and only if lim inf xn = lim sup xn (=lim xn)
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Open and closed sets

• O called open if

(∀x ∈ O)(∃δ > 0)(y ∈ R)(|y − x| < δ ⇒ y ∈ O)

– intersection of finite collection of open sets is open

– union of any collection of open sets is open

• E called closure of E if

(∀x ∈ E & δ > 0)(∃y ∈ E)(|x− y| < δ)

• F called closed if

F = F

– union of finite collection of closed sets is closed

– intersection of any collection of closed sets is closed
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Open and closed sets - facts

• every open set is union of countable collection of disjoint open intervals

• (Lindelöf) any collection C of open sets has a countable subcollection ⟨Oi⟩ such that⋃
O∈C

O =
⋃
i

Oi

– equivalently, any collection F of closed sets has a countable subcollection ⟨Fi⟩ such

that ⋂
O∈F

F =
⋂
i

Fi
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Covering and Heine-Borel theorem

• collection C of sets called covering of A if

A ⊂
⋃
O∈C

O

– C said to cover A

– C called open covering if every O ∈ C is open

– C called finite covering if C is finite

• Heine-Borel theorem - for any closed and bounded set, every open covering has finite

subcovering

• corollary

– any collection C of closed sets including at least one bounded set every finite

subcollection of which has nonempty intersection has nonempty intersection.
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Continuous functions

• f (with domain D) called continuous at x if

(∀ϵ > 0)(∃δ > 0)(∀y ∈ D)(|y − x| < δ ⇒ |f(y) − f(x)| < ϵ)

• f called continuous on A ⊂ D if f is continuous at every point in A

• f called uniformly continuous on A ⊂ D if

(∀ϵ > 0)(∃δ > 0)(∀x, y ∈ D)(|x− y| < δ ⇒ |f(x) − f(y)| < ϵ)
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Continuous functions - facts

• f is continuous if and only if for every open set O (in co-domain), f−1(O) is open

• f continuous on closed and bounded set is uniformly continuous

• extreme value theorem - f continuous on closed and bounded set, F , is bounded on F

and assumes its maximum and minimum on F

(∃x1, x2 ∈ F )(∀x ∈ F )(f(x1) ≤ f(x) ≤ f(x2))

• intermediate value theorem - for f continuous on [a, b] with f(a) ≤ f(b),

(∀d)(f(a) ≤ d ≤ f(b))(∃c ∈ [a, b])(f(c) = d)

Searching for Universal Truths - Real Analysis - Real Number System 32
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Borel sets and Borel σ-algebra

• Borel set

– any set that can be formed from open sets (or, equivalently, from closed sets) through

the operations of countable union, countable intersection, and relative complement

• Borel algebra or Borel σ-algebra

– smallest σ-algebra containing all open sets

– also

- smallest σ-algebra containing all closed sets

- smallest σ-algebra containing all open intervals (due to statement on page 29)
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Various Borel sets

• countable union of closed sets (in R), called an Fσ (F for closed & σ for sum)

– thus, every countable set, every closed set, every open interval, every open sets, is an

Fσ (note (a, b) =
⋃∞
n=1[a+ 1/n, b− 1/n])

– countable union of sets in Fσ again is an Fσ

• countable intersection of open sets called a Gδ (G for open & δ for durchschnitt -

average in German)

– complement of Fσ is a Gδ and vice versa

• Fσ and Gδ are simple types of Borel sets

• countable intersection of Fσ’s is Fσδ, countable union of Fσδ’s is Fσδσ, countable

intersection of Fσδσ’s is Fσδσδ, etc., & likewise for Gδσ...

• below are all classes of Borel sets, but not every Borel set belongs to one of these classes

Fσ, Fσδ, Fσδσ, Fσδσδ, . . . , Gδ, Gδσ, Gδσδ, Gδσδσ, . . . ,

Searching for Universal Truths - Real Analysis - Real Number System 34
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Diagrams for relations among various spaces

• note from the figure

– metric should be defined to utter completeness

– metric spaces can be induced from normed spaces

vector spaces

complete spaces

topological spaces

metric spaces

normed spaces

Searching for Universal Truths - Real Analysis - Space Overview 36
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Normed linear space

• X called linear space if

(∀x, y ∈ X, a, b ∈ R)(ax+ by ∈ X)

• linear space, X, called normed space with associated norm ∥ · ∥ : X → R+ if

–
(∀x ∈ X)(∥x∥ = 0 ⇒ x ≡ 0)

–
(∀x ∈ X, a ∈ R)(∥ax∥ = |a|∥x∥)

– subadditivity

(∀x, y ∈ X)(∥x+ y∥ ≤ ∥x∥ + ∥y∥)

Searching for Universal Truths - Real Analysis - Classical Banach Spaces 38
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Lp spaces

• Lp = Lp[0, 1] denotes space of (Lebesgue) measurable functions such that∫
[0,1]

|f |p < ∞

• define ∥ · ∥ : Lp → R+

∥f∥ = ∥f∥p =

(∫
[0,1]

|f |p
)1/p

• Lp are linear normed spaces with norm ∥ · ∥p when p ≥ 1 because

– |f(x)|p + |g(x)|p ≤ 2p(|f(x)|p + |g(x)|p) implies (∀f, g ∈ Lp)(f + g ∈ Lp)

– |αf(x)|p = |a|p|f(x)|p implies (∀f ∈ Lp, a ∈ R)(af ∈ Lp)

– ∥f∥ = 0 ⇒ f = 0 a.e.

– ∥af∥ = |a|∥f∥
– ∥f + g∥ ≥ ∥f∥ + ∥g∥ (Minkowski inequality)
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L∞ space

• L∞ = L∞[0, 1] denotes space of measurable functions bounded a.e.

• L∞ is linear normed space with norm

∥f∥ = ∥f∥∞ = ess sup|f | = inf
g:g=f a.e

sup
x∈[0,1]

|g(x)|

– thus

∥f∥∞ = inf{M |µ{x|f(x) > M} = 0}
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Inequalities in L∞

• Minkowski inequality - for p ∈ [1,∞]

(∀f, g ∈ L
p
)(∥f + g∥p ≤ ∥f∥p + ∥g∥p)

– if p ∈ (1,∞), equality holds if and only if (∃a, b ≥ 0 with ab ̸= 0)(af = bg a.e.)

• Minkowski inequality for 0 < p < 1:

(∀f, g ∈ L
p
)(f, g ≥ 0 a.e. ⇒ ∥f + g∥p ≥ ∥f∥p + ∥g∥p)

• Hölder’s inequality - for p, q ∈ [1,∞] with 1/p+ 1/q = 1

(∀f ∈ L
p
, g ∈ L

q
)

(
fg ∈ L

1
and

∫
[0,1]

|fg| ≤
∫
[0,1]

|f |p
∫
[0,1]

|g|q
)

– equality holds if and only if (∃a, b ≥ 0 with ab ̸= 0)(a|f |p = b|g|q a.e.)
(refer to page ?? for complete measure spaces counterpart)
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Convergence and completeness in normed linear spaces

• ⟨fn⟩ in normed linear space

– said to converge to f , i.e., lim fn = f or fn → f , if

(∀ϵ > 0)(∃N ∈ N)(∀n > N)(∥fn − f∥ < ϵ)

– called Cauchy sequence if

(∀ϵ > 0)(∃N ∈ N)(∀n,m > N)(∥fn − fm∥ < ϵ)

– called summable if
∑n

i=1 fi converges

– called absolutely summable if
∑n

i=1 |fi| converges

• normed linear space called complete if every Cauchy sequence converges

• normed linear space is complete if and only if every absolutely summable series is

summable
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Banach space

• complete normed linear space called Banach space

• (Riesz-Fischer) Lp spaces are compact, hence Banach spaces

• convergence in Lp called convergence in mean of order p

• convergence in L∞ implies nearly uniformly converges
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Approximation in Lp

• ∆ = ⟨di⟩ni=0 with 0 = d1 < d2 < · · · < dn = 1 called subdivision of [0, 1] (with

∆i = [di−1, di])

• φf,∆ for f ∈ Lp called step function if

φf,∆(x) =
1

di − di+1

∫ di

di−1

f(t)dt for x ∈ [di−1, di)

• for f ∈ Lp (1 < p ≤ ∞), exist φf,∆ and continuous function, ψ such that

∥φf,∆i − f∥ < ϵ and ∥ψ − f∥ < ϵ

– Lp version of Littlewood’s second principle (page ??)
(refer to page ?? for complete measure spaces counterpart)

• for f ∈ Lp, φf,∆ → f as max∆i → 0, i.e.,

(∀ϵ > 0)(∃δ > 0)(max∆i < δ ⇒ ∥φf,∆ − f∥p < ϵ)
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Bounded linear functionals on Lp

• F : X ∈ R for normed linear space X called linear functional if

(∀f, g ∈ F, a, b ∈ R)(F (af + bg) = aF (f) + bF (g))

• linear functional, F , said to be bounded if

(∃M)(∀f ∈ X)(|F (f)| ≤ M∥f∥)

• smallest such constant called norm of F , i.e.,

∥F∥ = sup
f∈X,f ̸=0

|F (f)|/∥f∥
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Riesz representation theorem

• for every g ∈ Lq (1 ≤ p ≤ ∞), following defines a bounded linear functional in Lp

F (f) =

∫
fg

where ∥F∥ = ∥g∥q

• Riesz representation theorem - for every bounded linear functional in Lp, F , (1 ≤ p <

∞), there exists g ∈ Lq such that

F (f) =

∫
fg

where ∥F∥ = ∥g∥q

(refer to page ?? for complete measure spaces counterpart)

• for each case, Lq is dual of Lp (refer to page 131 for definition of dual)
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Metric spaces

• ⟨X, ρ⟩ with nonempty set, X, and metric ρ : X ×X → R+ called metric space if for

every x, y, z ∈ X

– ρ(x, y) = 0 ⇔ x = y

– ρ(x, y) = ρ(y, x)

– ρ(x, y) ≤ ρ(x, z) + ρ(z, y) (triangle inequality)

• examples of metric spaces

– ⟨R, | · |⟩, ⟨Rn, ∥ · ∥p⟩ with 1 ≤ p ≤ ∞

• for f ⊂ X, Sx,r = {y|ρ(y, x) < r} called ball

• for E ⊂ X, sup{ρ(x, y)|x, y ∈ E} called diameter of E defined by

• ρ called pseudometric if 1st requirement removed

• ρ called extended metric if ρ : X ×X → R+ ∪ {∞}
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Cartesian product

• for two metric spaces ⟨X, ρ⟩ and ⟨Y, σ⟩, metric space ⟨X × Y , τ⟩ with τ : X×Y →
R+ such that

τ((x1, y1), (x2, y2)) = (ρ(x1, x2)
2
+ σ(y1, y2)

2
)
1/2

called Cartesian product metric space

• τ satisfies all properties required by metric

– e.g., Rn × Rm = Rn+m
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Open sets - metric spaces

• O ⊂ X said to be open open if

(∀x ∈ O)(∃δ > 0)(∀y ∈ X)(ρ(y, x) < δ ⇒ y ∈ O)

– X and ∅ are open

– intersection of finite collection of open sets is open

– union of any collection of open sets is open
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Closed sets - metric spaces

• x ∈ X called point of closure of E ⊂ X if

(∀ϵ > 0)(∃y ∈ E)(ρ(y, x) < ϵ)

– E denotes set of points of closure of E; called closure of E

– E ⊂ E

• F ⊂ X said to be closed if

F = F

– X and ∅ are closed

– union of finite collection of closed sets is closed

– intersection of any collection of closed sets is closed

• complement of closed set is open

• complement of open set is closed
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Dense sets and separability - metric spaces

• D ⊂ X said to be dense if

D = X

• X is said to be separable if exists finite dense subset, i.e.,

(∃D ⊂ X)(|D| < ∞ & D = X)

• X is separable if and only if exists countable collection of open sets ⟨Oi⟩ such that for

all open O ⊂ X

O =
⋃
Oi⊂O

Oi
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Continuous functions - metric spaces

• f : X → Y for metric spaces ⟨X, ρ⟩ and ⟨Y, σ⟩ called mapping or function from X

into Y

• f said to be onto if

f(X) = Y

• f said to be continuous at x ∈ X if

(∀ϵ > 0)(∃δ > 0)(∀y ∈ X)(ρ(y, x) < δ ⇒ σ(f(y), f(x)) < ϵ)

• f said to be continuous if f is continuous at every x ∈ X

• f is continuous if and only if for every open O ⊂ Y , f−1(O) is open

• if f : X → Y and g : Y → Z are continuous, g ◦ f : X → Z is continuous
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Homeomorphism

• one-to-one mapping of X onto Y (or equivalently, one-to-one correspondece between

X and Y ), f , said to be homeomorphism if

– both f and f−1 are continuous

• X and Y said to be homeomorphic if exists homeomorphism

• topology is study of properties unaltered by homeomorphisms and such properties called

topological

• one-to-one correspondece X and Y is homeomorphism if and only if it maps open sets

in X to open sets in Y and vice versa

• every property defined by means of open sets (or equivalently, closed sets) or/and being

continuous functions is topological one

– e.g., f is continuous on X is homeomorphism, then f ◦ h−1 is continuous function

on Y
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Isometry

• homeomorphism preserving distance called isometry, i.e.,

(∀x, y ∈ X)(σ(h(x), h(y)) = ρ(x, y))

• X and Y said to be isometric if exists isometry

• (from abstract point of view) two isometric spaces are exactly same; it’s nothing but

relabeling of points

• two metrics, ρ and σ on X, said to be equivalent if identity mapping of ⟨X, ρ⟩ onto

⟨X,σ⟩ is homeomorphism

– hence, two metrics are equivalent if and only if set in one metric is open whenever

open in the other metric
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Convergence - metric spaces

• ⟨xn⟩ defined for metric space, X

– said to converge to x, i.e., lim xn = x or xn → x, if

(∀ϵ > 0)(∃N ∈ N)(∀n > N)(ρ(xn, x) < ϵ)

– equivalently, every ball about x contains all but finitely many points of ⟨xn⟩

– said to have cluster point, x, if

(∀ϵ > 0, N ∈ N)(∃n > N)(ρ(xn, x) < ϵ)

– equivalently, every ball about x contains infinitely many points of ⟨xn⟩
– equivalently, every ball about x contains at least one point of ⟨xn⟩

• every convergent point is cluster point

– converse not true
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Completeness - metric spaces

• ⟨xn⟩ of metric space, X, called Cauchy sequence if

(∀ϵ > 0)(∃N ∈ N)(∀n,m > N)(ρ(xn, xm) < ϵ)

• convergence sequence is Cauchy sequence

• X said to be complete if every Cauchy sequence converges

– e.g., ⟨R, ρ⟩ with ρ(x, y) = |x− y|

• for incomplete ⟨X, ρ⟩, exists complete X∗ where X is isometrically embedded in X∗

as dense set

• if X contained in complete Y , X∗ is isometric with X in Y
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Uniform continuity - metric spaces

• f : X → Y for metric spaces ⟨X, ρ⟩ and ⟨Y, σ⟩ said to be uniformly continuous if

(∀ϵ > 0)(∃δ)(∀x, y ∈ X)(ρ(x, y) < δ ⇒ σ(f(x), f(y)) < ϵ)

– example of continuous, but not uniformly continuous function

– h : [0, 1) → R+ with h(x) = x/(1 − x)

– h maps Cauchy sequence ⟨1 − 1/n⟩∞n=1 in [0, 1) to ⟨n− 1⟩∞n=1 in R+, which is

not Cauchy sequence

• homeomorphism f between ⟨X, ρ⟩ and ⟨Y, σ⟩ with both f and f−1 uniformly

continuous called uniform homeomorphism

Searching for Universal Truths - Real Analysis - Metric Spaces 58



Sunghee Yun July 14, 2025

Uniform homeomorphism

• uniform homeomorphism f between ⟨X, ρ⟩ and ⟨Y, σ⟩ maps every Cauchy sequence

⟨xn⟩ in X mapped to ⟨f(xn)⟩ in Y which is Cauchy

– being Cauchy sequence, hence, being complete preserved by uniform homeomorphism

– being uniformly continuous also preserved by uniform homeomorphism

• each of three properties (being Cauchy sequence, being complete, being uniformly

continuous) called uniform property

• uniform properties are not topological properties, e.g., h on page 58

– is homeomorphism between incomplete space [0, 1) and complete space R+

– maps Cauchy sequence ⟨1 − 1/n⟩∞n=1 in [0, 1) to ⟨n− 1⟩∞n=1 in R+, which is not

Cauchy sequence

– its inverse maps uniformly continuous function sin back to non-uniformly continuity

function on [0, 1)
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Uniform equivalence

• two metrics, ρ and σ on X, said to be uniformly equivalent if identity mapping of

⟨X, ρ⟩ onto ⟨X,σ⟩ is uniform homeomorphism, i.e.,

(∀ϵ, δ > 0, x, y ∈ X)(ρ(x, y) < δ ⇒ σ(x, y) < ϵ& σ(x, y) < δ ⇒ ρ(x, y) < ϵ)

• example of uniform equivalence on X × Y

– any two of below metrics are uniformly equivalent on X × Y

τ((x1, y1), (x2, y2)) = (ρ(x1, x2)
2
+ σ(y1, y2)

2
)
1/2

ρ1((x1, y1), (x2, y2)) = ρ(x1, x2) + σ(y1, y2)

ρ∞((x1, y1), (x2, y2)) = max{ρ(x1, x2), σ(y1, y2)}

• for ⟨X, ρ⟩ and complete ⟨Y, σ⟩ and f : X → Y uniformly continuous on E ⊂ X

into Y , exists unique continuous extension g of f on E, which is uniformly continuous
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Subspaces

• for metric space, ⟨X, ρ⟩, metric space ⟨S, ρS⟩ with S ⊂ X and ρS being restriction

of ρ to S, called subspace of ⟨X, ρ⟩
– e.g. (with standard Euclidean distance)

- Q is subspace of R
-
{
(x, y) ∈ R2

∣∣ y = 0
}

is subspace of R2, which is isometric to R

• for metric space, X, and its subspace, S,

– E ⊂ S is closure of E relative to S.

– A ⊂ S is closure relative to S if and only if (∃F ⊂ A)(A = F ∩ S)
– A ⊂ O is open relative to S if and only if (∃ open O ⊂ A)(A = O ∩ S)

• also

– every subspace of separable metric space is separable

– every complete subset of metric space is closed

– every closed subset of complete metric space is complete
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Compact metric spaces

• motivation - want metric spaces where

– conclusion of Heine-Borel theorem (page 30) are valid

– many properties of [0, 1] are true, e.g., Bolzano-Weierstrass property (page 64)

• e.g.,

– bounded closed set in R has finite open covering property

• metric space X called compact metric space if every open covering of X, U , contains

finite open covering of X, e.g.,

(∀ open covering of X,U)(∃{O1, . . . , On} ⊂ U)(X ∈ ∪Oi)

• A ⊂ X called compact if compact as subspace of X

– i.e., every open covering of A contains finite open covering of A
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Compact metric spaces - alternative definition

• collection, F , of sets in X said to have finite intersection property if every finite

subcollection of F has nonempty intersection

• if rephrase definition of compact metric spaces in terms of closed instead of open

– X is called compact metric space if every collection of closed sets with empty

intersection contains finite subcollection with empty intersection

• thus, X is compact if and only if every collection of closed sets with finite intersection

property has nonempty intersection
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Bolzano-Weierstrass property and sequential compactness

• metric space said to

– have Bolzano-Weierstrass property if every sequence has cluster point

– X said to be sequentially compact if every sequence has convergent subsequence

• X has Bolzano-Weierstrass property if and only if sequentially compact (proof can be

found in Proof 1)
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Compact metric spaces - properties

• following three statements about metric space are equivalent (not true for general

topological sets)

– being compact

– having Bolzano-Weierstrass property

– being sequentially compact

• compact metric spaces have corresponding to some of those of complete metric spaces

(compare with statements on page 61)

– every compact subset of metric space is closed and bounded

– every closed subset of compact metric space is compact

• (will show above in following slides)
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Necessary condition for compactness

• compact metric space is sequentially compact (proof can be found in Proof 2)

• equivalently, compact metric space has Bolzano-Weierstrass property (page 64)
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Necessary conditions for sequentially compactness

• every continuity real-valued function on sequentially compact space is bounded and

assumes its maximum and minimum

• sequentially compact space is totally bounded

• every open covering of sequentially compact space has Lebesgue number
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Sufficient conditions for compactness

• metric space that is totally bounded and has Lebesgue number for every covering is

compact
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Borel-Lebesgue theorem

• conditions on pages 66, 67, and 68 imply the following equivalent statements

– X is compact

– X has Bolzano-Weierstrass property

– X is sequentially compact

• above called Borel-Lebesgue theorem

• hence, can drop sequentially in every statement on page 67, i.e.,

– every continuity real-valued function on sequentially compact space is bounded and

assumes its maximum and minimum

– sequentially compact space is totally bounded

– every open covering of sequentially compact space has Lebesgue number
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Compact metric spaces - other facts

• closed subset of compact space is compact

• compact subset of metric space is closed and bounded

– hence, Heine-Borel theorem (page 30) implies

set of R is compact if and only if closed and bounded

• metric space is compact if and only if it is complete and totally bounded

• thus, compactness can be viewed as absolute type of closedness

- refer to page 105 for exactly same comments for general topological spaces

• continuous image of compact set is compact

• continuous mapping of compact metric space into metric space is uniformly continuous
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Diagrams for relations among metric spaces

• the figure shows relations among metric spaces stated on pages 67, 68, 69, and 70

totally bounded

compact

Lebesgue numbercomplete
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Baire category

• do (more) deeply into certain aspects of complete metric spaces, namely, Baire theory

of category

• subset E in metric space where ∼ (E) is dense, said to be nowhere dense

– equivalently, E contains no nonempty open set

• union of countable collection of nowhere open sets, said to be of first category or meager

• set not of first category, said to be of second category or nonmeager

• complement of set of first category, called residual or co-meager
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Baire category theorem

• Baire theorem - for complete metric space, X, and countable collection of dense open

subsets, ⟨Ok⟩ ⊂ X, the intersection of the collection⋂
Ok

is dense

- refer to page 116 for locally compact space version of Baire theorem

• Baire category theorem - no nonempty open subset of complete metric space is of first

category, i.e., union of countable collection of nowhere dense subsets

• Baire category theorem is unusual in that uniform property, i.e., completeness of metric

spaces, implies purely topological nature1

1“no nonempty open subset of complete metric space is of first category” is purely topological nature because if two spaces
are (topologically) homeomorphic, and no nonempty open subsets of one space is of first category, then neither is any nonempty
open subset of the other space
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Second category everywhere

• metric or topological spaces with property that “no nonempty open subset of complete

metric space is of first category”, said to be of second category everywhere (with respect

to themselves)

• Baire category theorem says complete metric space is of second category everywhere

• locally compact Hausdorff spaces are of second category everywhere, too (refer to

page 113 for definition of locally compact Hausdorff spaces)

– for these spaces, though, many of results of category theory follow directly from local

compactness
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Sets of first category

• collection of sets with following properties, called a σ-ideal of sets

– countable union of sets in the collection is, again, in the collection

– subset of any in the collection is, again, in the collection

• both of below collections are σ-ideal of sets

– sets of first category in topological space

– measure zero sets in complete measure space

• sets of first category regards as “small” sets

– such sets in complete metric spaces no interior points

• interestingly! set of first category in [0, 1] can have Lebesgue measure 1, hence

complement of which is residual set of measure zero
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Some facts of category theory

• for open set, O, and closed set, F , O ∼ O and F ∼ F ◦ are nowhere dense

• closed set of first category in complete metric space is nowhere dense

• subset of complete metric space is residual if and only if contains dense Gδ, hence

subset of complete metric space is of first category if and only if contained in Fσ whose

complement is dense

• for countable collection of closed sets, ⟨Fn⟩,
⋃
Fn

◦ is residual open set; if
⋃
Fn is

complete metric space, O is dense

• some applications of category theory to analysis seem almost too good to be belived;

here’s one:

• uniform boundedness principle - for family, F , of real-valued continuous functions

on complete metric space, X, with property that (∀x ∈ X)(∃Mx ∈ R)(∀f ∈
F)(|f(x)| ≤ Mx)

(∃ open O,M ∈ R)(∀x ∈ O, f ∈ F)(|f(x)| ≤ M)
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Motivation for topological spaces

• want to have something like

– notion of open set is fundamental

– other notions defined in terms of open sets

– more general than metric spaces

• why not stick to metric spaces?

– certain notions have natural meaning not consistent with topological concepts derived

from metric spaces

– e.g.. weak topologies in Banach spaces
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Topological spaces

• ⟨X, J⟩ with nonempty set X of points and family J of subsets, which we call open,

having the following properties called topological spaces

– ∅, X ∈ J

– O1, O2 ∈ J ⇒ O1 ∩O2 ∈ J

– Oα ⇒ ∪αOα ∈ J

• family, J, is called topology

• for X, always exist two topologies defined on X

– trivial topology having only ∅ and X

– discrete topology for which every subset of X is an open set
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Topological spaces associated with metric spaces

• can associate topological space, ⟨X, J⟩, to any metric space ⟨X, ρ⟩ where J is family

of open sets in ⟨X, ρ⟩
∵ because properties in definition of topological space satisfied by open sets in metric

space

• ⟨X, J⟩ assiaciated with metric space, ⟨X, ρ⟩ said to be metrizable

– ρ called metric for ⟨X, J⟩

• distinction between metric space and associated topological space is essential

∵ because different metric spaces associate same topological space

– in this case, these metric spaces are equivalent

• metric and topological spaces are couples
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Some definitions for topological spaces

• subset F ⊂ X with F̃ is open called closed

• intersection of all closed sets containing E ⊂ X called closure of E denoted by E

– E is smallest closed set containing E

• x ∈ X called point of closure of E ⊂ X if every open set containing x meets E, i.e.,

has nonempty intersection with E

• union of all open sets contained in E ⊂ X is called interior of E denoted by E◦

• x ∈ X called interior point of E if exists open set, E, with x ∈ O ⊂ E
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Some properties of topological spaces

• ∅, X are closed

• union of closed sets is closed

• intersection of any collection of closed sets is closed

• E ⊂ E, E = E, A ∪ B = A ∪ B

• F closed if and only if F = F

• E is set of points of closure of E

• E◦ ⊂ E, (E◦)
◦
= E◦, (A ∪ B)

◦
= A◦ ∪ B◦

• E◦ is set of interior points of E

• (Ẽ)
◦
=∼ E
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Subspace and convergence of topological spaces

• for subset of ⟨X, J⟩, A, define topology S for A with S = {A ∩O|O ∈ J}
– S called topology inherited from J

– ⟨A,S⟩ called subspace of ⟨X, J⟩

• ⟨xn⟩ said to converge to x ∈ X if

(∀O ∈ J containing x)(∃N ∈ N)(∀n > N)(xn ∈ O)

– denoted by
lim xn = x

• ⟨xn⟩ said to have x ∈ X as cluster point if

(∀O ∈ J containing x,N ∈ N)(∃n > N)(xn ∈ O)

• ⟨xn⟩ has converging subsequence to x ∈ X, then x is cluster point of ⟨xn⟩
– converse is not true for arbitrary topological space
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Continuity in topological spaces

• mapping f : X → Y with ⟨X, J⟩, ⟨Y,S⟩ said to be continuous if

(∀O ∈ S)(f
−1

(O) ∈ J)

• f : X → Y said to be continuous at x ∈ X if

(∀O ∈ S containing f(x))(∃U ∈ J containing x)(f(U) ⊂ O)

• f is continuous if and only if f is continuous at every x ∈ X

• for continuous f on ⟨X, J⟩, restriction g on A ⊂ X is continuous (proof can be found

in Proof 3)

• for A with A = A1∪A2 where both A1 and A2 are either open or closed, f : A → Y

with each of both restrictions, f |A1 and f |A2, continuous, is continuous
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Homeomorphism for topological spaces

• one-to-one continuous function of X onto Y , f , with continuous inverse function,

f−1, called homeomorphism between ⟨X, J⟩ and ⟨Y,S⟩

• ⟨X, J⟩ and ⟨Y,S⟩ said to be homeomorphic if exists homeomorphism between them

• homeomorphic spaces are indistinguishable where homeomorphism amounting to

relabeling of points (from abstract pointp of view)

• thus, below roles are same

– role that homeomorphism plays for topological spaces

– role that isometry plays for metric spaces

– role that isomorphism plays for algebraic systems
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Stronger and weaker topologies

• for two topologies, J and S for same X with S ⊃ J

– S said to be stronger or finer than J

– J said to be weaker or coarser than S

• S is stronger than J if and only if identity mapping of ⟨X,S⟩ to ⟨Y, J⟩ is continuous

• for two topologies, J and S for same X, J ∩ S also topology

• for any collection of topologies, {Jα} for same X, ∩αJα is topology

• for nonempty set, X, and any collection of subsets of X, C
– exists weakest topology containing C, i.e., weakest topology where all subsets in C

are open

– it is intersection of all topologies containing C
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Bases for topological spaces

• collection B of open sets of ⟨X, J⟩ called a base for topology, J, of X if

(∀O ∈ J, x ∈ O)(∃B ∈ B)(x ∈ B ⊂ O)

• collection Bx of open sets of ⟨X, J⟩ containing x called a base at x if

(∀O ∈ J containing x)(∃B ∈ Bx)(x ∈ B ⊂ O)

– elements of Bx often called neighborhoods of x

– when no base given, neighborhood of x is an open set containing x

• thus, B of open sets is a base if and only if contains a base for every x ∈ X

• for topological space that is also metric space

– all balls from a base

– balls centered at x form a base at x
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Characterization of topological spaces in terms of bases

• definition of open sets in terms of base - when B is base of ⟨X, J⟩

(O ∈ J) ⇔ (∀x ∈ O)(∃B ∈ B)(x ∈ B ⊂ O)

• often, convenient to specify topology for X by

– specifying a base of open sets, B, and

– using above criterion to define open sets

• collection of subsets of X, B, is base for some topology if and only if

(∀x ∈ X)(∃B ∈ B)(x ∈ B)

and

(∀x ∈ X,B1, B2 ∈ B with x ∈ B1 ∩ B2)(∃B3 ∈ B)(x ∈ B3 ⊂ B1 ∩ B2)

– condition of collection to be basis for some topology
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Subbases for topological spaces

• for ⟨X, J⟩, collection of open sets, C called a subbase for topology J if

(∀O ∈ J, x ∈ O)(∃⟨Ci⟩ni=1 ⊂ C)(x ∈ ∩Ci ⊂ O)

– sometimes convenient to define topology in terms of subbase

• for subbase for J, C, collection of finite intersections of sets from C forms base for J

• any collection of subsets of X is subbase for weakest topology where sets of the

collection are open
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Axioms of countability

• topological space said to satisfy first axiom of countability if exists countable base at

every point

– every metric space satisfies first axiom of countability because for every x ∈ X, set

of balls centered at x with rational radii forms base for x

• topological space said to satisfy second axiom of countability if exists countable base

for the space

– every metric space satisfies second axiom of countability if and only if separable

(refer to page 52 for definition of separability)
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Topological spaces - facts

• given base, B, for ⟨X, J⟩

– x ∈ E if and only if (∃B ∈ B)(x ∈ B & B ∩ E ̸= ∅)

• given base at x for ⟨X, J⟩, Bx, and base at y for ⟨Y,S⟩, Cy

– f : X → Y continuous at x if and only if (∀C ∈ Cy)(∃B ∈ Bx)(B ⊂ f−1(C))

• if ⟨X, J⟩ satisfies first axiom of countability

– x ∈ E if and only if (∃⟨xn⟩ from E)(lim xn = x)

– x cluster point of ⟨xn⟩ if and only if exists its subsequence converging to x

• ⟨X, J⟩ said to be Lindelöf space or have Lindelöf property if every open covering of X

has countable subcover

• second axiom of countability implies Lindelöf property
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Separation axioms

• why separation axioms

– properties of topological spaces are (in general) quite different from those of metric

spaces

– often convenient assume additional conditions true in metric spaces

• separation axioms

– T1 - Tychonoff spaces

- (∀x ̸= y ∈ X)(∃ open O ⊂ X)(y ∈ O, x ̸∈ O)

– T2 - Hausdorff spaces

- (∀x ̸= y ∈ X)(∃ open O1, O2 ⊂ X with O1 ∩O2 = ∅)(x ∈ O1, y ∈ O2)

– T3 - regular spaces

- T1 & (∀ closed F ⊂ X, x ̸∈ F )(∃ open O1, O2 ⊂ X with O1∩O2 = ∅)(x ∈
O1, F ⊂ O2)

– T4 - normal spaces

- T1 & (∀ closed F1, F2 ⊂ X)(∃ open O1, O2 ⊂ X with O1 ∩ O2 = ∅)(F1 ⊂
O1, F2 ⊂ O2)

Searching for Universal Truths - Real Analysis - Topological Spaces 92



Sunghee Yun July 14, 2025

Separation axioms - facts

• necessary and sufficient condition for T1

– topological space satisfies T1 if and only if every singletone, {x}, is closed

• important consequences of normality, T4

– Urysohn’s lemma - for normal topological space, X

(∀ disjoint closed A,B ⊂ X)(∃f ∈ C(X, [0, 1]))(f(A) = {0}, f(B) = {1})

– Tietze’s extension theorem - for normal topological space, X

(∀ closed A ⊂ X, f ∈ C(A,R))(∃g ∈ C(X,R))(∀x ∈ A)(g(x) = f(x))

– Urysohn metrization theorem - normal topological space satisfying second axiom of

countability is metrizable
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Weak topology generated by functions

• given any set of points, X & any collection of functions of X into R, F , exists weakest

totally on X such that all functions in F is continuous

– it is weakest topology containing - refer to page 86

C =
⋃
f∈F

⋃
O⊂R

f
−1

(O)

– called weak topology generated by F
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Complete regularity

• for ⟨X, J⟩ and continuous function collection F , weak topology generated by F is

weaker than J

– however, if

(∀ closed F ⊂ X, x ̸∈ F )(∃f ∈ F)(f(A) = {0}, f(x) = 1)

then, weak topology generated by F coincides with J

– if condition satisfied by F = C(X,R), X said to be completely regular provided X

satisfied T1 (Tychonoff space)

• every normal topological (T4) space is completely regular (Urysohn’s lemma)

• every completely regular space is regular space (T3)

• complete regularity sometimes called T
312
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Diagrams for separation axioms for topological spaces

• the figure shows T4 ⇒ T
312

⇒ T3 ⇒ T2 ⇒ T1

• every metric spaces is normal space

T1

T4

T3.5

T3

T2

M
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Topological spaces of interest

• very general topological spaces quite bizarre

– do not seem to be much needed in analysis

• only topological spaces (Royden) found useful for analysis are

– metrizable topological spaces

– locally compact Hausdorff spaces

– topological vector spaces

• all above are completely regular

• algebraic geometry, however, uses Zariski topology on affine or projective space,

topology giving us compact T1 space which is not Hausdorff

Searching for Universal Truths - Real Analysis - Topological Spaces 97



Sunghee Yun July 14, 2025

Connectedness

• topological space, X,said to be connected if not exist two nonempty disjoint open sets,

O1 and O2, such that O1 ∪O2 = X

– such pair, (O1, O2), if exist, called separation of X

– pair of disjoint nonempty closed sets, (F1, F2), with F1∪F2 = X is also separation

of X - because they are also open

• X is connected if and only if only subsets that are both closed and open are ∅ and X

• subset E ⊂ X said to be connected if connected in topology inherited from ⟨X, J⟩

– thus, E is connected if not exist two nonempty open sets, O1 and O2, such that

E ⊂ O1 ∪O2 and E ∩O1 ∩O2 = ∅
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Properties of connected space, component, and local connectedness

• if exists continuous mapping of connected space to topological space, Y , Y is connected

• (generalized version of) intermediate value theorem - for f : X → R where X is

connected

(∀x, y ∈ X, c ∈ R with f(x) < c < f(y))(∃z ∈ X)(z = f(z))

• subset of R is connected if and only if is either interval or singletone

• for x ∈ X, union of all connected sets containing x is called component

– component is connected and closed

– two components containing same point coincide

– thus, X is disjoint union of components

• X said to be locally connected if exists base for X consisting of connected sets

– components of locally connected space are open

– space can be connected, but not locally connected
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Product topological spaces

• for ⟨X, J⟩ and ⟨Y,S⟩, topology on X × Y taking as a base the following

{O1 ×O2|O1 ∈ J, O2 ∈ S}

called product topology for X × Y

– for metric spaces, X and Y , product topology is product metric

• for indexed family with index set, A, ⟨Xα, Jα⟩, product topology on×α∈AXα defined

as taking as a base the following{×Xα

∣∣∣Oα ∈ Jα, Oα = Xα except finite number of α
}

• πα :×Xα → Xα with πα(y) = xα, i.e., α-th coordinate, called projection

– every πα continuous

– ×Xα weakest topology with continuous πα’s

• if (∀α ∈ A)(Xα = X),×Xα denoted by XA
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Product topology with countable index set

• for countable A
– ×Xα denoted by Xω or XN ∵ only # elements of A important

– e.g., 2ω is Cantor set if denoting discrete topology with two elements by 2

• if X is metrizable, Xω is metrizable

• Nω = NN is topology space homeomorphic to R ∼ Q when denoting discrete topology

with countable set also by N
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Product topologies induced by set and continuous functions

• for I = [0, 1], IA called cube

• Iω is metrizable, and called Hilbert cube

• for any set X and any collection of f : X → [0, 1], F with (∀x ̸= y ∈ X)(∃f ∈
F)(f(x) ̸= f(y))

– can define one-to-one mapping of F into IX with f(x) as x-th coordinate of f

– πx : F → I (mapping of F into I) with πx(f) = f(x)

– topology that F inherits as subspace of IX called topology of pointwise

convergence (because πx is project, hence continuous)

– can define one-to-one mapping of X into IF with f(x) as f -th coordinate of x

– topology of X as subspace of IF is weak topology generated by F
– if every f ∈ F is continuous,

– topology of X into IF is continuous

– if for every closed F ⊂ X and for each x ̸∈ F , exists f ∈ F such that

f(x) = 1 and f(F ) = {0}, then X is homeomorphic to image of IF
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Compact spaces

• compactness for metric spaces (page 62) can be generalized to topological spaces

– things are very much similar to those of metrics spaces

• for subset K ⊂ X, collection of open sets, U , the union of which K is contained in

called open covering of K

• topological space, X, said to be compact if every open convering of contains finite

subcovering

• K ⊂ X said to be compact if compact as subspace of X

– or equivalently, K is compact if every covering of K by open sets of X has finite

subcovering

– thus, Heine-Borel (page 30) says every closed and bounded subset of R is compact

• for F ⊂ P(X) any finite subcollection of which has nonempty intersection called finite

intersection property

• thus, topological space compact if and only if every collection with finite intersection

property has nonempty intersection
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Compact spaces - facts

• compactness can be viewed as absolute type of closedness because

– closed subset of compact space is compact

– compact subset of Hausdorff space is closed

- refer to page 70 for exactly the same comments for metric spaces

• thus, every compact set of R is closed and bounded

• continuous image of compact set is compact

• one-to-one continuous mapping of compact space into Hausdorff space is

homeomorphism
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Refinement of open covering

• for open covering of X, U , open covering of X every element of which is subset of

element of U , called refinement of U or said to refine U

• X is cmopact if and only if every open covering has finite refinement

• any two open covers, U and V , have common refinement, i.e.,

{U ∩ V |U ∈ U, V ∈ V}
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Countable compactness and Lindelöf

• topological space for which every open covering has countable subcovering said to be

Lindelöf

• topological space for which every countable open covering has finite subcovering said to

be countably compact space

• thus, topological space is compact if and only if both Lindelöf and countably compact

• every second countable space is Lindelöf

• thus, countable compactness coincides with compactness if second countable (i.e.,

satisfying second axiom of countability)

• continuous image of compact countably compact space is countably compact
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Bolzano-Weierstrass property and sequential compactness

• topological space, X, said to have Bolzano-Weierstrass property if every sequence,

⟨xn⟩, in X has at least one cluster point, i.e.,

(∀⟨xn⟩)(∃x ∈ X)(∀ϵ > 0, N ∈ N)(∃n > N,O ⊂ X)(x ∈ O,O is open, xn ∈ O)

• topological space has Bolzano-Weierstrass properties if and only if countably compact

• topological space said to be sequentially compact if every sequence has converging

subsequence

• sequentially compact space is countably compact

• thus, Lindelöf coincides with compactness if sequentially compact

• countably compact and first countable (i.e., satisfying first axiom of countability) space

is sequentially compact
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Diagrams for relations among topological spaces

• the figure shows relations among topological spaces stated on pages 107 and 108

Lindelof

compact

2nd countable

BW == CC

sequentially compact
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Real-valued functions on topological spaces

• continuous real-valued function on countably compact space is bounded and assumes

maximum and minimum

• f : X → R with topological space, X, called upper semicontinuous if {x ∈
X|f(x) < α} is open for every α ∈ R

• stronger statement - upper semicontinuous real-valued function on countably compact

space is bounded (from above) and assumes maximum

• Dini - for sequence of upper semicontinuous real-valued functions on countably compact

space, ⟨fn⟩, with property that ⟨fn(x)⟩ decreases monotonically to zero for every

x ∈ X, ⟨fn⟩ converges to zero uniformly
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Products of compact spaces

• Tychonoff theorem - (probably) most important theorem in general topology

• most applications in analysis need only special case of product of (closed) intervals, but

this special case does not seem to be easire to prove than general case, i.e., Tychonoff

theorem

• lemmas needed to prove Tychonoff theorem

– for collection of subsets of X with finite intersection property, A, exists collection

B ⊃ A with finite intersection property that is maximal with respect to this property,

i.e., no collection with finite intersection property properly contains B
– for collection, B, of subsets of X that is maximal with respect to finite intersection

property, each intersection of finite number of sets in B is again in B and each set

that meets each set in B is itself in B

• Tychonoff theorem - product space×Xα is compact for indexed family of compact

topological spaces, ⟨Xα⟩
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Locally compact spaces

• topological space, X, with

(∀x ∈ X)(∃ open O ⊂ X)(x ∈ O,O is compact)

called locally compact

• topological space is locally compact if and only if set of all open sets with compact

closures forms base for the topological space

• every compact space is locally compact

– but converse it not true

- e.g., Euclidean spaces Rn are locally compact, but not compact
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Locally compact Hausdorff spaces

• locally compact Hausdorff spaces constitute one of most important classes of topological

spaces

• so useful is combination of Hausdorff separation axioms in connection with compactness

that French usage (following Bourbaki) reserves term ‘compact space’ for those compact

and Hausdorff, using term ‘pseudocompact’ for those not Hausdorff!

• following slides devote to establishing some of their basic properties
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Support and subordinateness

• for function, f , on topological spaces, closure of {x|f(x) ̸= 0}, called support of f ,

i.e.,

support f = {x|f(x) ̸= 0}

• given covering {Oλ} of X, collection {φα} with φα : X → R satisfying

(∀φα)(∃Oλ)(supportφα ⊂ Oλ)

said to be subordinate to {Oλ}
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Some properties of locally compact Hausdorff spaces

• for compact subset, K, of locally compact Hausdorff space, X

– exists open subset with compact closure, O ⊂ X, containing K

– exists continuous nonnegative function, f , on X, with

(∀x ∈ K)(f(x) = 1) and (∀x ̸∈ O)(f(x) = 0)

if K is Gδ, may take f < 1 in K̃

• for open covering, {Oλ}, for compact subset, K, of locally compact Hausdorff space,

exists ⟨φi⟩ni=1 ⊂ C(X,R+) subordinate to {Oλ} such that

(∀x ∈ K)(φ1(x) + · · · + φn(x) = 1)
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Local compactness and second Baire category

• for locally compact space, X, and countable collection of dense open subsets,

⟨Ok⟩ ⊂ X, the intersection of the collection⋂
Ok

is dense

– analogue of Baire theorem for complete metric spaces (refer to page 73 for Baire

theorem)

• thus, every locally compact space is locally of second Baire category with respect to

itself
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Local compactness, Hausdorffness, and denseness

• for countable union,
⋃
Fn, of closed sets containing open subset, O, in locally compact

space, union of interiors,
⋃
Fn

◦, is open set dense in O

• dense subset of Hausdorff space, X, which is locally compact in its subspace topology,

is open subset of X

• subset, Y , of locally compact Hausdorff space is locally compact in its subspace

topology if and only if Y is relatively open subset of Y
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Alexandroff one-point compactification

• for locally compact Hausdorff space, X, can form X∗ by adding single point ω ̸∈ X to

X and take set in X∗ to be open if it is either open in X or complement of compact

subset in X, then

– X∗ is compact Hausdorff spaces

– identity mapping of X into X∗ is homeomorphism of X and X∗ ∼ {ω}
– X∗ called Alexandroff one-point compactification of X

– ω often referred to as infinity in X∗

• continuous mapping, f , from topological space to topological space inversely mapping

compact set to compact set, said to be proper

• proper maps from locally compact Hausdorff space into locally compact Hausdorff space

are precisely those continuous maps of X into Y tha can be extended to continuous

maps f∗ of X∗ into Y ∗ by taking point at infinity in X∗ to point at infinity in Y ∗
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Manifolds

• connected Hausdorff space with each point having neighborhood homeomorphic to ball

in Rn called n-dimensional manifold

• sometimes say manifold is connected Hausdorff space that is locally Euclidean

• thus, manifold has all local properties of Euclidean space; particularly locally compact

and locally connected

• neighborhood homeomorphic to ball called coordinate neighborhood or coordinate ball

• pair ⟨U,φ⟩ with coordinate ball, U , with homeomorphism from U onto ball in Rn, φ,
called coodinate chart; φ called coordinate map

• coordinate (in Rn) of point, x ∈ U , under φ said to be coordinate of x in the chart
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Equivalent properties for manifolds

• for manifold, M , the following are equivalent

– M is paracompact

– M is σ-compact

– M is Lindelöf

– every open cover of M has star-finite open refinement

– exist sequence of open subsets of M , ⟨On⟩, with On compact, On ⊂ On+1, and

M =
⋃
On

– exists proper continuous map, φ : M → [0,∞)

– M is second countable
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Vector spaces

• set X with + : X × X → X, · : R × X → X satisfying the following properties

called vector space or linear space or linear vector space over R

- for all x, y, z ∈ X and λ, µ ∈ R

x+ y = y + x - additive commutativity

(x+ y) + z = x+ (y + z) - additive associativity

(∃0 ∈ X) x+ 0 = x - additive identity

λ(x+ y) = λx+ λy - distributivity of multiplicative over addition

(λ+ µ)x = λx+ µx - distributivity of multiplicative over addition

λ(µx) = (λµ)x - multiplicative associativity

0 · x = 0 ∈ X

1 · x = x
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Norm and Banach spaces

• ∥ · ∥ : X → R+ with vector space, X, called norm if

for all x, y ∈ X and α ∈ R

∥x∥ = 0 ⇔ x = 0 - positive definiteness / positiveness /point-separating

∥x+ y∥ ≥ ∥x∥ + ∥y∥ - triangle inequality / subadditivity

∥αx∥ = |α|∥x∥ - Absolute homogeneity

• normed vector space that is complete metric space with metric induced by norm, i.e.,

ρ : X ×X → R+ with ρ(x, y) = ∥x− y∥, called Banach space

– can be said to be class of spaces endowed with both topological and algebraic

structure

• examples include

– Lp with 1 ≤ p ≤ ∞ (page 43),

– C(X) = C(X,R), i.e., space of all continuous real-valued functions on compact

space, X
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Properties of vector spaces

• normed vector space is complete if and only if every absolutely summable sequence is

summable
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Subspaces of vector spaces

• nonempty subset, S, of vector space, X, with x, y ∈ S ⇒ λx + µy ∈ S, called

subspace or linear manifold

• intersection of any family of linear manifolds is linear manifold

• hence, for A ⊂ X, exists smallest linear manifold containing A, often denoted by {A}

• if S is closed as subset of X, called closed linear manifold

• some definitions

– A+ x defined by {y + x|y ∈ A}, called translate of A by x

– λA defined by {λx|x ∈ A}
– A+ B defined by {x+ y|x ∈ A, y ∈ B}
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Linear operators on vector spaces

• mapping of vector space, X, to another (possibly same) vector space called linear

mapping, or linear operator, or linear transformation if

(∀x, y ∈ X,α, β ∈ R)(A(αx+ βyy) = α(Ax) + β(Ay))

• linear operator called bounded if

(∃M)(∀x ∈ X)(∥Ax∥ ≤ M∥x∥)

• least such bound called norm of linear operator, i.e.,

M = sup
x∈X,x ̸=0

∥Ax∥/∥x∥

– linearity implies

M = sup
x∈X,∥x∥=1

∥Ax∥ = sup
x∈X,∥x∥≤1

∥Ax∥
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Isomorphism and isometrical isomorphism

• bounded linear operator from X to Y called isomorphism if exists bounded inverse

linear operator, i.e.,

(∃A : X → Y,B : Y → X)(AB and BA are identity)

• isomorphism between two normed vector spaces that preserve norms called isometrical

isomorphism

• from abstract point of view, isometrically isomorphic spaces are identical, i.e., isometrical

isomorphism merely amounts to element renaming
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Properties of linear operators on vector spaces

• for linear operators, point continuity ⇒ boundedness ⇒ uniform continuity, i.e.,

– bounded linear operator is uniformly continuous

– linear operator continuous at one point is bounded

• space of all bounded linear operators from normed vector space to Banach space is

Banach space
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Linear functionals on vector spaces

• linear operator from vector space, X, to R called linear functional, i.e., f : X → R
such that for all x, y ∈ X and α, β ∈ R

f(αx+ βy) = αf(x) + βf(y)

• want to extend linear functional from subspace to whole vector space while preserving

properties of functional
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Hahn-Banach theorem

• Hahn-Banach theorem - for vector space, X, and linear functional, p : X → R with

(∀x, y ∈ X,α ≥ 0)(p(x+ y) ≤ p(x) + p(y) and p(αx) = αp(x))

and for subspace of X, S, and linear functional, f : S → R, with

(∀s ∈ S)(f(s) ≤ p(s))

exists linear functional, F : X → R, such that

(∀s ∈ S)(F (s) = f(s)) and (∀x ∈ X)(F (x) ≤ p(x))

• corollary - for normed vector space, X, exists bounded linear functional, f : X → R

f(x) = ∥f∥∥x∥
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Dual spaces of normed spaces

• space of bounded linear functionals on normed space, X, called dual or conjugate of

X, denoted by X∗

• every dual is Banach space (refer to page 128)

• dual of Lp is (isometrically isomorphic to) Lq for 1 ≤ p < ∞
– exists natural representation of bounded linear functional on Lp by Lq (by Riesz

representation theorem on page 46)

• not every bounded linear functionals on L∞ has natural representation (proof can be

found in Proof 4)
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Natural isomorphism

• define linear mapping of normed space, X, to X∗∗ (i.e., dual of dual of X),

φ : X → X∗∗ such that for x ∈ X, (∀f ∈ X∗)((φ(x))(f) = f(x))

– then, ∥φ(x)∥ = sup∥g∥=1,g∈X∗ g(x) ≤ sup∥g∥=1,g∈X∗ ∥g∥∥x∥ = ∥x∥

– by corollary on page 130, there exists f ∈ X∗ such that f(x) = ∥x∥, then

∥f∥ = 1, and f(x) = ∥x∥, thus ∥φ(x)∥ = sup∥g∥=1,g∈X∗ g(x) ≥ f(x) = ∥x∥

– thus, ∥φ(x)∥ = ∥x∥, hence φ is isometrically isomorphic linear mapping of X onto

φ(X) ⊂ X∗∗, which is subspace of X∗∗

– φ called natural isomorphism of X into X∗∗

– X said to be reflexive if φ(X) = X∗∗

• thus, Lp with 1 < p < ∞ is reflexive, but L1 and L∞ are not

• note X may be isometric with X∗∗ without reflexive
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Completeness of natural isomorphism

• for natural isomorphism, φ

• X∗∗ is complete, hence Banach space

– because bounded linear functional to R (refer to page 128)

• thus, closure of φ(X) in X∗∗, φ(X), complete (refer to page 61)

• therefore, every normed vector space (X) is isometrically isomorphic to dense subset of

Banach spaces (X∗∗)
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Hahn-Banach theorem - complex version

• Bohnenblust and Sobczyk - for complex vector space, X, and linear functional,

p : X → R with

(∀x, y ∈ X,α ∈ C)(p(x+ y) ≤ p(x) + p(y) and p(αx) = |α|p(x))

and for subspace of X, S, and (complex) linear functional, f : S → C, with

(∀s ∈ S)(|f(s)| ≤ p(s))

exists linear functional, F : X → R, such that

(∀s ∈ S)(F (s) = f(s))

and

(∀x ∈ X)(|F (x)| ≤ p(x))
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Open mapping on topological spaces

• mapping from topological space to another topological space the image of each open

set by which is open called open mapping

• hence, one-to-one continuous open mapping is homeomorphism

• (will show) continuous linear transformation of Banach space onto another Banach

space is always open mapping

• (will) use above to provide criteria for continuity of linear transformation
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Closed graph theorem (on Banach spaces)

• every continuous linear transformation of Banach space onto Banach space is open

mapping

– in particular, if the mapping is one-to-one, it is isomorphism

• for linear vector space, X, complete in two norms, ∥ · ∥A and ∥ · ∥B, with

C ∈ R such that (∀x ∈ X)(∥x∥A ≤ C∥x∥B), two norms are equivalent, i.e.,

(∃C ′ ∈ R)(∀x ∈ X)(∥x∥B ≤ C ′∥x∥A)

• closed graph theorem - linear transformation, A, from Banach space, A, to Banach

space, B, with property that “if ⟨xn⟩ converges in X to x ∈ X and ⟨Axn⟩ converges

in Y to y ∈ Y , then y = Ax” is continuous

– equivalent to say, if graph {(x,Ax)|x ∈ X} ⊂ X × Y is closed, A is continuous
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Principle of uniform boundedness (on Banach spaces)

• principle of uniform boundedness - for family of bounded linear operators, F from

Banach space, X, to normed space, Y , with

(∀x ∈ X)(∃Mx)(∀T ∈ F)(∥Tx∥ ≤ Mx)

then operators in F is uniformly bounded, i.e.,

(∃M)(∀T ∈ F)(∥T∥ ≤ M)
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Topological vector spaces

• just as notion of metric spaces generalized to notion of topological spaces

• notion of normed linear space generalized to notion of topological vector spaces

• linear vector space, X, with topology, J, equipped with continuous addition,

+ : X ×X → X and continuous multiplication by scalars, + : R ×X → X, called

topological vector space
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Translation invariance of topological vector spaces

• for topological vector space, translation by x ∈ X is homeomorphism (due to continuity

of addition)

– hence, x+O of open set O is open

– every topology with this property said to be translation invariant

• for translation invariant topology, J, on X, and base, B, for J at 0, set

{x+ U |U ∈ B}

forms a base for J at x

• hence, sufficient to give a base at 0 to determine translation invariance of topology

• base at 0 often called local base
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Sufficient and necessarily condition for topological vector spaces

• for topological vector space, X, can find base, B, satisfying following properties

(∀U, V ∈ B)(∃W ∈ B)(W ⊂ U ∩ V )

(∀U ∈ B, x ∈ U)(∃V ∈ B)(x+ V ⊂ U)

(∀U ∈ B)(∃V ∈ B)(V + V ⊂ U)

(∀U ∈ B, x ∈ X)(∃α ∈ R)(x ∈ αU)

(∀U ∈ B, 0 < |α| ≤ 1 ∈ R)(αU ⊂ U,αU ⊂ B)

• conversely, for collection, B, of subsets containing 0 satisfying above properties, exists

topology for X making X topological vector space with B as base at 0

– this topology is Hausdorff if and only if⋂
{U ∈ B} = {0}

• for normed linear space, can take B to be set of spheres centered at 0, then B satisfies

above properties, hence can form topological vector space
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Topological isomorphism

• in topological vector space, can compare neighborhoods at one point with neighborhoods

of another point by translation

• for mapping, f , from topological vector space, X, to topological vector space, Y , such

that

(∀ open O ⊂ Y with 0 ∈ O)(∃ open U ⊂ X with 0 ∈ U)

(∀x ∈ X)(f(x+ U) ⊂ f(x) +O)

said to be uniformly continuous

• linear transformation, f , is uniformly continuous if continuous at one point

• continuous one-to-one mapping, φ, from X onto Y with continuous φ−1 called

(topological) isomorphism

– in abstract point of view, isomorphic spaces are same

• Tychonoff - finite-dimensional Hausdorff topological vector space is topologically

isomorphic to Rn for some n
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Weak topologies

• for vector space, X, and collection of linear functionals, F , weakest topology generated

by F , i.e., in way that each functional in F is continuous in that topology, called weak

topology generated by F
– translation invariant

– base at 0 given by sets

{x ∈ X|∀f ∈ G, |f(x)| < ϵ}

for all finite G ⊂ F and ϵ > 0

– basis satisfies properties on page 140, hence, (above) weak topology makes topological

vector space

• for normed vector space,X, and collection of continuous functionals, F , i.e., F ⊂ X∗,

weak topology generated by F weaker than (fewer open sets) norm topology of X

• metric topology generated by norm called strong topology of X

• weak topology generated by X∗ called weak topology of X
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Strongly and weakly open and closed sets

• open and closed sets of strong topology called strongly open and strongly closed

• open and closed sets of weak topology called weakly open and weakly closed

• wealy closed set is strongly closed, but converse not true

• however, these coincides for linear manifold, i.e., linear manifold is weakly closed if and

only if strongly closed

• every strongly converent sequence (or net) is weakly convergent
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Weak∗ topologies

• for normed space, weak topology of X∗ is weakest topology for which all functionals in

X∗∗ are continuous

• turns out that weak topology of X∗ is less useful than weak topology generated by X,

i.e., that generated by φ(X) where φ is the natural embedding of X into X∗∗ (refer

to page 132)

• (above) weak topology generated by φ(X) called weak∗ topology for X∗

– even weaker than weak topology of X∗

– thus, weak∗ closed subset of is weakly closed, and weak convergence implies weak∗

convergence

• base at 0 for weak∗ topology given by sets

{f |∀x ∈ A, |f(x)| < ϵ}

for all finite A ⊂ X and ϵ > 0

• when X is reflexive, weak and weak∗ topologies coincide

• Alaoglu - unit ball S∗ = {f ∈ X∗|∥f∥ ≥ 1} is compact in weak∗ topology
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Convex sets

• for vector space, X and x, y ∈ X

{λx+ (1 − λ)y|λ ∈ [0, 1]} ⊂ X

called segmenet joining x and y

• set K ⊂ X said to be convex or convex set if every segment joining any two points in

K is in K, i.e., (∀x, y ∈ K)(segment joining x, y ⊂ X)

• every λx+ (1 − λ)y for 0 < λ < 1 called interior point of segment

• point in K ⊂ X where intersection with K of every line going through x contains

open interval about x, said to be internal point, i.e.,

(∃ϵ > 0)(∀y ∈ K, |λ| < ϵ)(x+ yx ∈ K)

• convex set examples - linear manifold & ball, ellipsoid in normed space
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Properties of convex sets

• for convex sets, K1 and K2, following are also convex sets

K1 ∩K2, λK1, K1 +K2

• for linear operators from vector space, X, and vector space, Y ,

– image of convex set (or linear manifold) in X is convex set (or linear manifold) in Y ,

– inverse image of convex set (or linear manifold) in Y is convex set (or linear manifold)

in X

• closure of convex set in topological vector space is convex set
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Support functions of and separated convex sets

• for subset K of vector space X, p : K → R+ with p(x) = inf λ|λ−1x ∈ K,λ > 0

called support functions

• for convex set K ⊂ X containing 0 as internal point

– (∀x ∈ X,λ ≥ 0)(p(λx) = λp(x))

– (∀x, y ∈ X)(p(x+ y) ≤ p(x) + p(y))

– {x ∈ X|p(x) < 1} ⊂ K ⊂ {x ∈ X|p(x) ≤ 1}

• two convex sets, K1 and K2 such that exists linear functional, f , and α ∈ R with

(∀x ∈ K1)(f(x) ≤ α) and (∀x ∈ K2)(f(x) ≥ α), said to be separated

• for two disjoint convex sets in vector space with at least one of them having internal

point, exists nonzero linear functional that separates two sets
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Local convexity

• topological vector space with base for topology consisting of convest sets, said to be

locally convex

• for family of convex sets, N , in vector space, following conditions are sufficient for

being able to translate sets in N to form base for topology to make topological space

into locally convex topological vector space

(∀N ∈ N )(x ∈ N ⇒ x is internal)

(∀N1, N2 ∈ N )(∃N3 ∈ N )(N3 ⊂ N1 ∩N2)

(∀N ∈ N , α ∈ R with 0 < |α| < 1)(αN ∈ N )

• conversely, for every locally convex topological vector space, exists base at 0 satisfying

above conditions

• follows that

– weak topology on vector space generated by linear functionals is locally convex

– normed vector space is locally convex topological vector space
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Facts regarding local convexity

• for locally convex topological vector space closed convex subset, F , with point, x, not

in F , exists continuous linear functional, f , such that

f(x) < inf
y∈F

f(y)

• corollaries

– convex set in locally convex topological vector space is strongly closed if and only if

weakly closed

– for distinct points, x and y, in locally convex Hausdorff vector space, exists

continuous linear functional, f , such that f(x) ̸= f(y)
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Extreme points and supporting sets of convex sets

• point in convex set in vector space that is not interior point of any line segment lying in

the set, called extreme point

• thus, x is extreme point of convex set, K, if and only if x = λy + (1 − λ)z with

0 < λ < 1 implies y ̸∈ K or z ̸∈ K

• closed and convex subset, S, of convex set, K, with property that for every interior

point of line segment in K belonging to S, entire line segment belongs to S, called

supporting set of K

• for closed and convex set, K, set of points a continuous linear functional assumes

maximum on K, is supporting set of K
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Convex hull and convex convex hull

• for set E in vector space, intersection of all convex sets containing set, E, called convex

hull of E, which is convex set

• for set E in vector space, intersection of all closed convex sets containing set, E, called

closed convex hull of E, which is closed convex set

• Krein-Milman theorem - compact convex set in locally convex topologically vector space

is closed convex hull of its extreme points

Searching for Universal Truths - Real Analysis - Banach Spaces 151



Sunghee Yun July 14, 2025

Hilbert spaces

• Banach space, H, with function ⟨·, ·⟩ : H ×H → R satisfying following properties,

called Hilbert space

(∀x, y, z ∈ H,α, β ∈ R)(⟨αx+ βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩)

(∀x, y ∈ H)(⟨x, y⟩ = ⟨y, z⟩)

(∀x ∈ H)(⟨x, x⟩ = ∥x∥2
)

• ⟨x, y⟩ called inner product for x, y ∈ H

– examples - ⟨x, y⟩ = xTy =
∑
xiyi for R

n, ⟨x, y⟩ =
∫
x(t)y(t)dt for L2

• Schwarz or Cauchy-Schwarz or Cauchy-Buniakowsky-Schwarz inequality -

∥x∥∥y∥ ≥ ⟨x, y⟩

– hence,

- linear functional defined by f(x) = ⟨x, y⟩ bounded by ∥y∥
- ⟨x, y⟩ is continuous function from H ×H to R
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Inner product in Hilbert spaces

• x and y in H with ⟨x, y⟩ = 0 said to be orthogonal denoted by x ⊥ y

• set S of which any two elements orthogonal called orthogonal system

• orthogonal system called orthonormal if every element has unit norm

• any two elements are
√
2 apart, hence if H separable, every orthonormal system in H

must be countable

• shall deal only with separable Hilbert spaces
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Fourier coefficients

• assume orthonormal system expressed as sequence, ⟨φn⟩ - may be finite or infinite

• for x ∈ H

an = ⟨x, φn⟩
called Fourier coefficients

• for n ∈ N, we have

∥x∥2 ≥
n∑
i=1

a
2
i

Proof :∥∥∥∥∥x−
n∑
i=1

aiφi

∥∥∥∥∥
2

=
〈
x−

∑
aiφi, x−

∑
aiφi

〉
= ⟨x, x⟩ − 2

〈
x,
∑

aiφi
〉

+
〈∑

aiφi,
∑

aiφi
〉

= ∥x∥2 − 2
∑

ai ⟨x, φi⟩ +
∑

a
2
i∥φi∥

2
= ∥x∥2 −

∑
a
2
i ≥ 0
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Fourier coefficients of limit of x

• Bessel’s inequality - for x ∈ H, its Fourier coefficients, ⟨an⟩
∞∑
n=1

a
2
n ≤ ∥x∥2

• then, ⟨zn⟩ defined by following is Cauchy sequence zn =
∑n

i=1 aiφi

• completeness (of Hilbert space) implies ⟨zn⟩ converges - let y = lim zn

y = lim zn =

∞∑
i=1

aiφi

• continuity of inner product implies ⟨y, φn⟩ = lim(zn, φn) = an, i.e., Fourier

coefficients of y ∈ H are an, i.e.,

• y has same Fourier coefficients as x
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Complete orthonormal system

• orthonormal system, ⟨φn⟩∞n=1, of Hilbert spaces, H, is said to be complete if

(∀x ∈ H,n ∈ N)(⟨x, φn⟩ = 0) ⇒ x = 0

• orthonormal system is complete if and only if maximal, i.e.,

⟨φn⟩ is complete ⇔ ((∃ orthonormal R ⊂ H)(∀n ∈ N)(φn ∈ R) ⇒ R = ⟨φn⟩)

(proof can be found in Proof 5)

• Hausdorff maximal principle (Principle 4) implies existence of maximal orthonormal

system, hence following statement

• for separable Hilbert space, H, every orthonormal system is separable and exists a

complete orthonormal system. any such system, ⟨φn⟩, and x ∈ H

x =
∑

anφn

with an = ⟨x, φn⟩, and ∥x∥ =
∑
a2n
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Dimensions of Hilbert spaces

• every complete orthonormal system of separable Hilbert space has same number of

elements, i.e., has same cardinality

• hence, every complete orthonormal system has either finite or countably infinite

complete orthonormal system

• this number called dimension of separable Hilbert space

– for Hilbert space with countably infinite complete orthonormal system, we say,

dimH = ℵ0
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Isomorphism and isometry between Hilbert spaces

• isomorphism, Φ, of Hilbert space onto another Hilbert space is linear mapping with

property, ⟨Φx,Φy⟩ = ⟨x, y⟩

• hence, every isomorphism between Hilbert spaces is isometry

• every n-dimensional Hilbert space is isomorphic to Rn

• every ℵ0-dimensional Hilbert space is isomorphic to l2, which again is isomorphic to L2

• L2[0, 1] is separable and ⟨cos(nπt)⟩ is infinite orthogonal system

• every bounded linear functional, f , on Hilbert space, H, has unique y such that

(∀x ∈ H)(f(x) = ⟨x, y⟩)

and ∥f∥ = ∥y∥
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Selected proofs

• Proof 1. (Proof for “Bolzano-Weierstrass-implies-seq-compact” on page 64)

if sequence, ⟨xn⟩, has cluster point, x, every ball centered at x contains at one least

point in sequence, hence, can choose subsequence converging to x. conversely, if ⟨xn⟩
has subsequence converging to x, x is cluster point.

• Proof 2. (Proof for “compact-in-metric-implies-seq-compact” on page 66)

for ⟨xn⟩,
〈
An

〉
with Am = ⟨bn⟩∞n=m has finite intersection property because any

finite subcollection {An1
, . . . , Ank

} contains xnk, hence⋂
An ̸= ∅,

thus, there exists x ∈ X contained in every An. x is cluster point because for

every ϵ > 0 and N ∈ N, then x ∈ AN+1, hence there exists n > N such that xn
contained in ball about x with radius, ϵ. hence it’s sequentially compact.

• Proof 3. (Proof for “restriction-of-continuous-topology-continuous” on page 84)
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because for every open set O, g−1(O) ∈ J, A ∩ g−1(O) is open by definition of

inherited topology.

• Proof 4. (Proof for “l-infinity-not-have-natural-representation” on page 131)

C[0, 1] is closed subspace of L∞[0, 1]. define f(x) for x ∈ C[0, 1] such that

f(x) = x(0) ∈ R. f is linear functional because f(αx+ βy) = αx(0) + βy(0) =

αf(x) + β(y). because |f(x)| = |x(0)| ≤ ∥x∥∞, ∥f∥ ≤ 1. for x ∈ C[0, 1] such

that x(t) = 1 for 0 ≤ t ≤ 1, |f(x)| = 1 = ∥x∥∞, hence achieves supremum, thus

∥f∥ = 1.

if we define linear functional p on L∞[0, 1] such that p(x) = f(x), p(x + y) =

x(0) + y(0) = p(x) + p(y) ≤ p(x) + p(y), p(αx) = αx(0) = αp(x), and

f(x) ≤ p(x) for all x, y ∈ L∞[0, 1] and α ≥ 0, and f(s) = p(s) ≤ p(s) for all

s ∈ C[0, 1]. Hence, Hahn-Banach theorem implies, exists F : L∞[0, 1] → R such

that F (x) = f(x) for every x ∈ C[0, 1] and F (x) ≤ f(x) for every x ∈ L∞[0, 1].

Now assume y ∈ L1[0, 1] such that F (x) =
∫
[0,1]

xy for x ∈ C[0, 1]. If we

define ⟨xn⟩ in C[0, 1] with xn(0) = 1 vanishing outside t = 0 as n → ∞, then∫
[0,1]

xny → 0 as n → ∞, but F (xn) = 1 for all n, hence, contradiction. Therefore

there is not natural representation for F .
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• Proof 5. (Proof for “orthonormal-system” on page 156)

Assume ⟨φn⟩ is complete, but not maximal. Then there exists orthonormal system, R,

such that ⟨φn⟩ ⊂ R, but ⟨φn⟩ ≠ R. Then there exists another z ∈ R such that

z ̸∈ ⟨φn⟩. But definition ⟨z, φn⟩ = 0, hence z = 0. But ∥z∥ = 0, hence, cannot be

member of orthonormal system. contraction, hence proved right arrow, i.e., sufficient

condition (of the former for the latter).

Now assume that it is maximal. Assume there exists z ̸= 0 ∈ H such that

⟨z, φn⟩ = 0. Then ⟨φn⟩∞n=0 with φ0 = z/∥z∥ is anoter orthogonal system

containing ⟨φn⟩, hence contradiction, thus proved left arrow, i.e., necessarily condition.
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closure

set, 4

codomain

functions, 12

compact spaces

Hausdorff spaces, 105

complement

set, 3

complete

Banach spaces, 43, 123

metric spaces, 26, 57, 72, 74

normed spaces, 42

ordered field, 25

orthonormal system, 156

complex number, 3

conjugate

normed spaces, 131

convergence

of set, 15

convex

sets

segmenet, 145

convex sets, 145

closed convex hull, 151

convex hull, 151

extreme point, 150

interior point of segment, 145

internal point, 145

local convexity, 148, 149

separated convex sets, 147

support functions, 147
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supporting sets, 150

countability

axiom of countability, 90

definitions

almost everywhere - a.e., 7

direct product, 21

functions, 12

infinitely often - i.o., 7

difference

set, 4

direct product, 21

discrete topology, 79

domain

functions, 12

dual

normed spaces, 131

equivalence relation, 18

fiber

functions, 12

finite sequence, 3

Fourier coefficients

Hilbert spaces, 154

Fourier, Jean-Baptiste Joseph

Fourier coefficients, 154

functions, 12, 13

bijection, 12

bijective, 12

bijective correspondece, 12
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codomain, 12

domain, 12

fiber, 12

injection, 12

injective, 12

inverse image, 12

left inverse, 12

one-to-one, 12

one-to-one correspondece, 12

onto, 12

preimage, 12

range, 12

right inverse, 12

surjection, 12

surjective, 12

generated by

σ-algebra

by subsets, 17

algebra, 17

Hölder’s inequality

linear normed spaces, 41

Hölder, Ludwig Otto

Hölder’s inequality

linear normed spaces, 41

Hausdorff maximal principle, 20

Hausdorff, Felix

locally compact spaces, 97, 113, 115

maximal principle, 20

spaces, 92

Heine, Heinrich Eduard

Heine-Borel theorem, 30
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Heine-Borel theorem, 30

Hilbert spaces, 152

Bessel’s inequality, 155

Cauchy-Buniakowsky-Schwarz inequality, 152

Cauchy-Schwarz inequality, 152

complete orthonormal system, 156

dimension, 157

Fourier coefficients, 154

inner product, 152, 153

isometry, 158

isomorphism, 158

orthogonal system, 153

orthogonality, 153

orthonormal system

completeness, 156

orthonormality, 153

Schwarz inequality, 152

separable Hilbert space, 153

Hilbert, David

Hilbert spaces, 152–158

i.o.

infinitely often, 7

ideals

topological spaces

σ-ideal of sets, 75

infinite sequence, 3

infinitely often, 7

infinitely often - i.o., 7

injection

functions, 12
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injective

functions, 12

inner product

Hilbert spaces, 152, 153

integer, 3

interior

set, 4

inverse image

functions, 12

isomorphism

algebraic systems, 85

topological vector spaces, 141

vector spaces, 127

Krein, Mark Grigorievich

Krein-Milman theorem, 151

Krein-Milman theorem, 151

Lebesgue, Henri Léon

Borel-Lebesgue theorem, 69

left inverse

functions, 12

lemmas

functions, 13

limit inferior (liminf)

set, 15

limit superior (limsup)

set, 15

linear ordering, 18
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Littlewood’s three principles

second principle

linear normed spaces, 44

locally compact spaces, 112

Alexandroff one-point compactification, 118

Hausdorff, Felix, 97, 113, 115

Alexandroff one-point compactification, 118

proper map, 118

local compactness, 112

local compactness and second Baire category,
116

local compactness, Hausdorffness, and
denseness, 117

manifolds, 119

Hausdorff spaces, 119

maps, 12

matrix

positive definite, 5

positive semi-definite, 5

symmetric, 5

trace, 4

metric spaces

Baire category theorem, 73

Baire theorem, 73

Baire theory of category, 72

compact, 62

diagrams for relations among, 71

separable, 52, 61, 90

Milman, David Pinhusovich

Krein-Milman theorem, 151

Minkowski inequality

linear normed spaces, 41
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for 0 < p < 1, 41

Minkowski, Hermann

Minkowski inequality

linear normed spaces, 41

multiplicative axiom, 20, 21

natural isomorphism

normed spaces, 132

natural number, 3

norm

vector, 4

normed spaces, 38

conjugate, 131

dual, 131

linear, 38

natural isomorphism, 132

completeness, 133

number

complex number, 3

integer, 3

natural number, 3

rational number, 3

real number, 3

one-to-one

functions, 12

one-to-one correspondece

functions, 12

onto

functions, 12

ordering
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linear, 18

partial, 18

simple, 18

orthogonality

Hilbert spaces, 153

orthonormality

Hilbert spaces, 153

partial ordering, 18

positive definite matrix, 5

positive semi-definite matrix, 5

preimage

functions, 12

principle of mathematical induction, 11

principle of recursive definition, 11

principles

Hausdorff maximal principle, 20

principle of mathematical induction, 11

principle of recursive definition, 11

well ordering principle, 11

well-ordering principle, 20

product topological spaces, 100

range

functions, 12

rational number, 3

real number, 3

relation

be relation on, 18
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stand in relation, 18

relative interior

set, 4

Riesz representation theorem, 46

linear normed spaces, 46

Riesz, Frigyes

Riesz representation theorem, 46

linear normed spaces, 46

right inverse

functions, 12

Schwarz, Hermann

Cauchy-Buniakowsky-Schwarz inequality

Hilbert spaces, 152

Cauchy-Schwarz inequality

Hilbert spaces, 152

Schwarz inequality

Hilbert spaces, 152

separable

metric spaces, 52, 61, 90

sequence, 3

finite sequence, 3

infinite sequence, 3

set

boundary, 4

closure, 4

complement, 3

convergence of sequence, 15

difference, 4

interior, 4

limit inferior (liminf), 15

limit superior (limsup), 15
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relative interior, 4

simple ordering, 18

smallest σ-algebra containing subsets, 4, 17

smallest algebra containing subsets, 17

surjection

functions, 12

surjective

functions, 12

symmetric matrix, 5

topological spaces, 77–79

σ-ideal of sets, 75

base, 87

diagrams for relations among, 109

diagrams for separation axioms for, 96

discrete topology, 79

Hausdorff spaces, 92

locally compact Hausdorff spaces, 97

locally compact spaces, 112

metrizable, 101

motivation, 78

neighborhood, 87

normal spaces, 92

product

countable, 101

product topology, 100

projection, 100

products of compact spaces, 111

proper mapping, 118

regular spaces, 92

separation axioms, 92

subordinateness, 114
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support, 114

topology, 79

trivial topology, 79

Tychonoff spaces, 92

Tychonoff theorem, 111

topological vector spaces, 138

isomorphism, 141

strongly and weakly open and closed sets, 143

sufficient and necessarily condition, 140

weak topologies, 142

weak∗ topologies, 144

topology, 79

discrete topology, 79

trivial topology, 79

trace

matrix, 4

trivial topology, 79

Tychonoff, Andrey Nikolayevich

Tychonoff spaces, 92

Tychonoff theorem, 111

vector

norm, 4

vector spaces, 122

isomorphism, 127

well ordering principle, 11

well-ordering principle, 20

ZZ-figures

diagrams for relations among metric spaces, 71

diagrams for relations among topological spaces,
109
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diagrams for relations among various spaces, 36

diagrams for separation axioms for topological
spaces, 96

ZZ-important

Nω = NN is topology space homeomorphic to
R ∼ Q, 101

every normed vector space is isometrically
isomorphic to dense subset of Banach spaces,
133

open set in R is union of countable collection of
disjoint open intervals, 29

Riesz representation theorem, 46

space of all bounded linear operators from
normed vector space to Banach space is
Banach space, 128

Tychonoff - finite-dimensional Hausdorff
topological vector space is topologically
isomorphic to Rn for some n, 141

Tychonoff theorem - (probably) most important
theorem in general topology, 111

ZZ-revisit

topological space is locally compact if and only
if set of all open sets with compact closures
forms base for the topological space, 112

ZZ-todo

0 - apply new comma conventions, 0

1 - convert bullet points to proper theorem,
definition, lemma, corollary, proposition, etc.,
0

CANCELED - < 2024 0421 - python script
extracting important list, 0

CANCELED - 2024 0324 - references to
slides dealing with additional locally compact
Hausdorff space properties, 113

DONE - 2024 0324 - change tocpageref and
funpageref to hyperlink, 0
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DONE - 2024 0324 - python script extracting
figure list → using “list of figures”
functionality on doc, 0

DONE - 2024 0324 - python script extracting
theorem-like list → using “list of theorem”
functionality on doc, 0

DONE - 2024 0324 - python script for converting
slides to doc, 0

DONE - 2025 0414 - 1 - change mathematicians’
names, 0

Searching for Universal Truths - Index 181


